Equations de Lorenz et mise en évidence d'un attracteur étrange

Reda Belhaj

2018

- Les équations de Lorenz
 - Equations de Saltzman
 - Décomposition en série de Fourier, troncature de Lorenz
- Etude du système de Lorenz
 - Stabilité du système (au sens de Liapounov)
 - Un aspect de l'attracteur
- Simulations numériques
- 4 Annexe : preuves des théorèmes

Introduction : modèle de Rayleigh

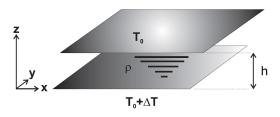


Figure – Modèle étudié

Trois évolutions :

- 1. δT petit : conduction seule, pas de mouvement d'ensemble.
- 2. δT élevé : comportement très complexe.
- 3. Entre les deux? Le fluide s'organise en rouleaux.

Equations de Saltzman

Equations de base : Navier Stokes (1) et équation de la chaleur (2) :

$$\rho_0 \frac{D\vec{v}}{dt} = \rho \vec{g} - \nabla P + \mu \Delta \vec{v} \tag{1}$$

$$\frac{DT}{dt} = \mathcal{D}\Delta T \tag{2}$$

On utilise des variables sans dimension, et on introduit : $\sigma:=\frac{\mu}{\rho_0\mathcal{D}}$

$$R := \frac{\alpha g h^3 \rho_0 \delta T}{\mu \mathcal{D}}$$

$$T(x, z, t) = T_{repos}(z) + (\delta T)\theta(x, z, t)$$
$$(v_x, v_z) = (\partial_z \psi, -\partial_x \psi)$$

(on admet l'existence d'une telle fonction) On obtient les équations de Saltzman :

Equations de Saltzman

$$\partial_t \Delta \psi + \{ \Delta \psi, \psi \} - R \sigma \partial_x \theta - \sigma \Delta^2 \psi = 0$$
 (3)

$$\partial_t \theta - \{\psi, \theta\} + \partial_x \psi - \Delta \theta = 0 \tag{4}$$

Décomposition en série de Fourier

Figure - Rouleaux de Bénard

$$\psi(x,z,t) = \sum_{n=1}^{+\infty} \sum_{m=1}^{+\infty} \psi_{m,n}(t) \sin(\pi m z) \sin\left(\frac{2\pi n x}{a}\right)$$

$$\theta(x,z,t) = \sum_{n=0}^{+\infty} \sum_{m=1}^{+\infty} \theta_{m,n}(t) \sin(\pi m z) \cos\left(\frac{2\pi n x}{a}\right)$$

Troncature de Lorenz

Troncature de Lorenz

$$\psi(x, z, t) = \tilde{X}(t)\sin(\pi z)\sin(2\pi \frac{x}{a})$$

$$\theta(x,z,t) = \tilde{Y}(t)\sin(\pi z)\cos(2\pi \frac{x}{2}) - \tilde{Z}(t)\sin(2\pi z).$$

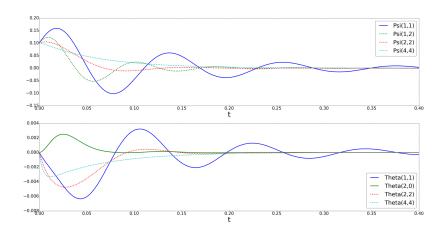


Figure – Evolution dans le temps de quelques modes de la décomposition

Equations de Lorenz

On obtient par changement d'échelle et en introduisant

$$r = rac{4R}{\pi^4 a^2 \left(1 + rac{4}{a^2}
ight)^3}, b = rac{4}{1 + rac{4}{a^2}}$$

le système d'équations de Lorenz :

Système de Lorenz

$$\begin{cases} \frac{\mathrm{d}X}{\mathrm{d}\tau} &= \sigma(-X+Y) \\ \frac{\mathrm{d}Y}{\mathrm{d}\tau} &= rX-Y-XZ \\ \frac{\mathrm{d}Z}{\mathrm{d}\tau} &= XY-bZ \end{cases}$$

Stabilité du système (au sens de Liapounov)

On considère l'équation différentielle :

$$y' = Ay + f(t)$$

$$y(t_0)=y_0$$

f est une fonction de I dans \mathbb{R}^n supposée de classe \mathcal{C}^1

Proposition 1

Le problème admet la solution définie par

$$\forall t \in I, y(t) = e^{(t-t_0)A}y_0 + \int_0^t e^{(t-s)A}f(s)ds.$$

Dans toute la suite $I = [0, +\infty[$.

Equilibre stable, asymptotiquement stable

Définition 1 (Equilibre stable)

On dit que y_0 est un équilibre stable si pour tout voisinage V de y_0 , il existe un voisinage V de y_0 tel que, pour tout $\tilde{y}_0 \in V$

- L'équation avec la condition initiale $y(t=0) = \tilde{y}_0 \in V$ admet une solution notée $y(t, \tilde{y}_0)$.
- $\forall t \geq 0, y(t, \tilde{y}_0) \in U$

Définition 2 (Equilibre asymptotiquement stable)

On dit que y_0 est un équilibre asymptotiquement stable si c'est un équilibre stable et qu'il existe un voisinage W de y_0 tel que pour tout $\tilde{y}_0 \in W$

- $y(t, \tilde{y}_0)$ est bien définie.
- $-\lim_{t\to+\infty}y(t,\tilde{y}_0)=y_0$

Etude pratique de la stabilité d'une équation différentielle

Théorème 1

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Les solutions stationnaires du système y' = Ay sont asymptotiquement stables si et seulement si pour tout $\lambda \in Sp(A), Re(\lambda) < 0$.

Théorème 2

On considère l'équation y'=f(y), où f est de classe \mathcal{C}^1 . Soit $y_0 \in \mathbb{R}^n$. On suppose que y_0 est un point stationnaire. Si les valeurs propres de la différentielle $\mathrm{d} f(y_0)$ sont toutes de partie réelle strictement négative, alors y_0 est asymptotiquement stable.

Etude du système

Le modèle des rouleaux n'est valable que pour des petites valeurs de δT . Ceci motive la proposition :

Proposition 2

Soit a la période spatiale telle que la solution correspondant au fluide au repos devienne instable pour la plus petite valeur de δT . Alors $a=2\sqrt{2}$.

Cela revient à chercher a tel que (X=Y=Z=0) devienne instable pour la plus petite valeur de R.

Paramètres habituels : $r=28, b=8/3, \sigma=10$. Problème : pour r>1 (les valeurs de r pour les quelles il y a instabilité, donc celles qui nous intéressent), les modes que nous avons négligés ne sont peut être pas négligeables.

On considère l'ellipsoïde d'équation

$$\frac{x^2}{2\sigma} + \frac{y^2}{2} + \frac{z^2}{2} - (r+1)z = m,$$

où m est un réel positif.

Si une trajectoire entre dans un tel ellipsoïde, elle y reste pour toujours.

Proposition 3

Soit $h: \mathbb{R}^n \to R$ de classe \mathcal{C}^1 , on note $F = h^{-1}(]-\infty,0])$ Soit X(t) = (x(t),y(t),z(t)) solution de X' = f(X). On pose g(t) = h(x(t),y(t),z(t)). On suppose que pour tout t, si $(x(t),y(t),z(t)) \in h^{-1}(\{0\})$ alors g'(t) < 0. Soit t_0 tel que $X(t_0) \in F$. Alors : $\forall t \geq t_0, X(t) \in F$

lci:
$$g(t) = \frac{x(t)^2}{2\sigma} + \frac{y(t)^2}{2} + \frac{z(t)^2}{2} - (r+1)z(t) - m$$

 $g'(t) = x'x/\sigma + yy' + (z - (r+1))z' = x(y-x) + y(rx-y-xz) + (z - (r+1))(-bz + xy).$
On trouve final ment

On trouve finalement

$$g'(t) = -x^2 - y^2 - bz^2 + (1+r)bz$$

Ainsi, en prenant m assez grand, la condition g(x(t), y(t), z(t)) = 0 entraı̂ne g'(t) < 0.

→ロト ◆問 → ◆恵 → モ → り へ ○

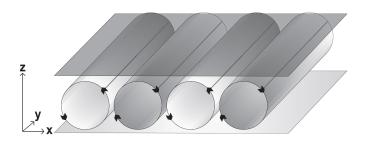


Figure - Rouleaux de Bénard

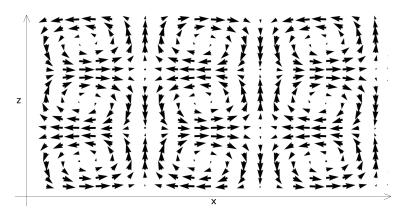


Figure - Champ des vecteurs vitesses au sein du fluide (Python)

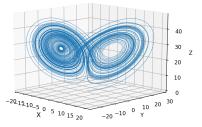


Figure – Simulation pour r = 28

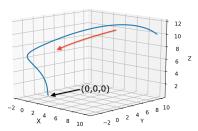


Figure – Simulation pour r = 0.2

Proposition 4

Soit a la période spatiale telle que la solution correspondant au fluide au repos devienne instable pour la plus petite valeur de δT . Alors $a=2\sqrt{2}$.

Cela revient à chercher a tel que (X=Y=Z=0) devienne instable pour la plus petite valeur de R.

Démonstration : On linéarise le système d'équations autour du point fixe (0,0,0). On obtient

$$\begin{pmatrix} \dot{X} \\ \dot{Y} \\ \dot{Z} \end{pmatrix} = \begin{pmatrix} -\sigma & \sigma & 0 \\ r & -1 & 0 \\ 0 & 0 & -b \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

L'équation en Z est indépendante. On note $M = \begin{pmatrix} -\sigma & \sigma \\ r & -1 \end{pmatrix}$

 ${\rm Tr}(M)=-\sigma-1<0$, la somme des valeurs propres est négative, elles ne peuvent pas être toutes les deux positives, et donc la condition est équivalente à ${\rm det}M=\lambda_1\lambda_2<0$, soit encore

$$\sigma(1-r) < 0 \Leftrightarrow r > 1 \Leftrightarrow R > \frac{\pi^4 a^2}{4} \left(1 + \frac{4}{a^2}\right)^3.$$

Le seuil d'instabilité est $\frac{\pi^4 a^2}{4} \left(1 + \frac{4}{a^2}\right)^3$, minimal pour $a = 2\sqrt{2}$.

- 4 □ ▶ 4 @ ▶ 4 분 ▶ 4 분 ▶ 9 Q @

Proposition 5

Soit $f: \mathbb{R}^n \to \mathbb{R}$ de classe C^1 , on note $F = f^{-1}(]-\infty,0]$). Soit X un champ de vecteurs défini au voisinage de tout point de F, vérifiant :

$$\forall x \in f^{-1}(\{0\}), df(x).X(x) < 0.$$

Soit x une solution de x' = X(x), telle que $x(t_0) \in F$. Alors : $\forall t > t_0, x(t) \in F$.

Démonstration: On note g(t)=f(x(t)). Par l'absurde, on suppose qu'il existe un $t>t_0$ tel que f(x(t))>0, on s'intéresse à la borne inférieure t_1 de cet ensemble, qui vérifie donc $f(x(t_1))\geq 0$. Pour $t\in [t_0,t_1], f(x(t))<0$, donc par passage à la limite, $f(x(t_1))=0$. Par hypothèse on a alors $\mathrm{d} f(x(t_1)).X(x(t_1))<0$, soit $g'(t_1)<0$. Donc pour t au voisinage de t_1 on a

$$g(t) \sim (t-t_1)g'(t_1),$$

qui contredit la minimalité de t_1 .

Dans notre cas :
$$g(t) = \frac{x(t)^2}{2\sigma} + \frac{y(t)^2}{2} + \frac{z(t)^2}{2} - (r+1)z(t) - m$$

 $g'(t) = x'x/\sigma + yy' + (z - (r+1))z' = x(y-x) + y(rx-y-xz) + (z-(r+1))(-bz+xy).$

On trouve finalement

$$g'(t) = -x^2 - y^2 - bz^2 + (1+r)bz$$

Ainsi, en prenant m assez grand, la condition g(x(t), y(t), z(t)) = 0 entraı̂ne g'(t) < 0.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

Théorème 3

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Les solutions stationnaires du système y' = Ay sont asymptotiquement stables si et seulement si pour tout $\lambda \in Sp(A), Re(\lambda) < 0$.

Démonstration : Il suffit d'étudier le point fixe 0.

 \Rightarrow Contraposée. Soit λ de partie réelle positive, soit y_0 un vecteur propre associé. On a

$$||y(t, y_0)|| = ||e^{tA}y_0|| = \left\| \sum_{k=0}^{+\infty} \frac{t^k \lambda^k y_0}{k!} \right\| = ||e^{\lambda t}y_0|| = e^{\operatorname{Re}(\lambda)t} ||y_0||$$

 $||y(t, y_0)||$ ne tend pas vers 0 lorsque $t \to +\infty$.

 \Leftarrow Stabilité : On trigonalise A finement, et si N est nilpotente, les coefficients de $\exp(t(N+\lambda I))$ sont de la forme $e^{\lambda t}P(t)$, On pose $\mu=\sup_{\lambda\in\operatorname{Sp}(A)}\lambda<0$.

$$\forall y_0 \in \mathbb{R}^n, \forall t \geq 0, \|y(t, y_0)\| = \|e^{tA}y_0\| \leq CP(t)e^{\mu t} = KP(t)e^{\mu t},$$

où C, K sont des constantes.

Théorème 4

On considère l'équation y' = f(y), où f est de classe C^1 . Si les valeurs propres de la différentielle $\mathrm{d} f(0)$ sont toutes de partie réelle strictement négative, alors 0 est asymptotiquement stable.

Démonstration : On pose A = df(0), f(y) = Ay + r(y).

L'équation différentielle : y' = Ay + r(y), de solutions :

$$y(t, y_0) = e^{At}y_0 + \int_0^t e^{(t-s)A}r(y(s, y_0))ds.$$

$$\forall t \geq 0, \|e^{At}y_0\| \leq M'e^{-\sigma t}\|y_0\|.$$

Soit $\delta > 0$ tel que $||y|| \le \delta \Rightarrow ||r(y)|| \le \frac{\sigma}{2M'} ||y||$. Soit y_0 tel que $||y_0|| \le \frac{\delta}{2M'}$. Soit $T \ge 0$ tel que $\forall t \in [0, T], ||y(t, y_0)|| \leq \delta$ Ainsi, on a après application du lemme de Gronwall

$$||v(t, v_0)|| < M' e^{-\frac{\sigma t}{2}} ||v_0||$$

$$\forall t \in [0, T], \|y(t, y_0)\| \le \delta/2,$$

La majoration que nous avons obtenue reste vraie pour tout t > 0(par l'absurde).

27 / 28

Lemme 1 (de Gronwall)

Soit φ, ψ des fonctions continues sur le segment [a,b] à valeurs positives, vérifiant :

$$\forall t \in [a, b], \varphi(t) \leq K + \int_a^t \psi(s)\varphi(s)ds.$$

Alors :

$$\forall t \in [a, b], \varphi(t) \leq K \exp\left(\int_a^t \psi(s) ds\right).$$

Démonstration : On étudie les variations de la fonction définie par

$$f(t) = \frac{K + \int_a^t \psi(s)\varphi(s)ds}{\exp\left(\int_a^t \psi(s)ds\right)}$$